
Master Thesis
Computer Science
Thesis no: MCS-2003:17
June 2003

Department of
Software Engineering and Computer Science
Blekinge Institute of Technology
Box 520
SE – 372 25 Ronneby
Sweden

Computer Forensic Text Analysis with
Open Source Software

Christian Johansson

 ii

This thesis is submitted to the Department of Software Engineering and Computer Science at
Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time
studies.

Contact Information:
Author:
Christian Johansson
E-mail: uncle@fukt.bth.se

University advisor:
Bengt Carlsson
Department of Software Engineering and Computer Science

Department of
Software Engineering and Computer Science
Blekinge Institute of Technology
Box 520
SE – 372 25 Ronneby
Sweden

Internet : www.bth.se/ipd
Phone : +46 457 38 50 00
Fax : + 46 457 271 25

ABSTRACT

A computer forensic investigation is not only dependent on correct and flawless analysis of
the given data, but also of this analysis being conducted within a reasonable amount of time
and effort. Given the exponential growth in size of hard disk drives coupled with the fact that
many phases in a computer forensic investigation are still performed manually, the
compromise between accuracy and completeness is becoming more and more of a problem.
This paper concentrates on the text analysis process within computer forensics, focusing on
the use of open source software. It discusses and examines the different techniques used in
the possible future streamlining of said process.

Keywords: forensics, text analysis, natural language

 2

Acknowledgments
The author would like to thank the following persons and institutions for the help and
support they have given prior and during the writing of this thesis.

• Bengt Carlsson, my supervisor at Blekinge Institute of Technology, whose input and
suggestions were invaluable during the completion of this thesis.

• Per Mellstrand, for proofreading the thesis and giving helpful advise.

• FUKT, the computer club at BTH, where I have spent the last five months
investigating, coding, tearing my hair and finally writing this thesis.

• My former girlfriend, for showing a delightful flair for timing when breaking up
with me at the beginning of this project, thus enabling me to sit at FUKT all through
the nights without feeling guilty about it.

 3

TABLE OF CONTENTS
ABSTRACT.. I

1 INTRODUCTION...4

2 THE SLEUTH KIT AND AUTOPSY ..6
2.1 AN OVERVIEW OF THE SLEUTH KIT AND AUTOPSY ...6
2.2 THE GREP AND STRINGS COMMANDS ..7

3 COMPUTER FORENSIC TEXT ANALYSIS..8
3.1 AN OVERVIEW OF COMPUTER FORENSICS TEXT ANALYSIS...8
3.2 BOOLEAN STYLE SEARCHING..8
3.3 THESAURUS SEARCHING ...8
3.4 STEMMING ..9
3.5 NATURAL LANGUAGE ...10
3.6 FUZZY SEARCHING AND PHONIC RECOGNITION..11
3.7 INDEXING THE SEARCH DATA ...11

4 THE IMPLEMENTATION...14
4.1 OVERVIEW OF THE IMPLEMENTATION ..14
4.2 INDEXING THE DATA ...14
4.3 THESAURUS ENABLED SEARCHES ...17
4.4 BOOLEAN SEARCHES...18
4.5 STEMMING ..20

5 DISCUSSIONS AND FUTURE WORK ..22

6 CONCLUSIONS ...25

7 REFERENCES..27

 4

1 INTRODUCTION

Forensics is the application of science in order to produce items of evidentiary

value in regards to civil and criminal investigations. This is a complex process of
preserving, documenting, extracting and analyzing various amounts of potentially
evidentiary material. Since the product of these activities have the potential to crucially
impact on peoples lives, e.g. by sending them to jail for 20 years, there lies a great
amount of responsibility on those conducting these activities and of course on the
scientific level of the activities themselves. Forensics has a long history, e.g. around
the year 700 fingerprints were used in China to establish identity of clay figures and
documents [1]. During the last some two hundred years the art of forensics has
matured and developed significantly, now encompassing such diverse areas as
entomology, ballistics and pathology, and is now regarded as standing on a solid
scientific foundation. Although development is forever ongoing the understanding and
acceptance of forensic techniques and methodology is solid throughout both the
scientific and juridical communities.

Computer forensics is a subset of forensics, concentrating on the handling of

evidential material relating to computers and other electronic devices such as cellular
phones and Personal Digital Assistants. Just as with any other discipline within
forensics, computer forensics has some basic and well-defined methodologies that
remain consistent. And as with the other disciplines, these methodologies need to be
coupled with flexibility and intuition in order to successfully handle potentially
criminal material [2]. Compared with other disciplines within forensic science,
computer forensics has been around for a relatively short amount of time. Partly
because of this, computer forensics has yet to amass the broad acceptance other
forensic disciplines enjoy. This will hopefully change in the not too distant future, as
the ongoing research and overall interest in computer forensics has increased during
the last few years.

Something that sets computer forensics apart from other forensic disciplines is the

unsurpassed, and seemingly forever ongoing, increase of data that needs to be
processed. In the eighties, when the first small hard disk drives appeared, a 5.25-inch
hard disk held about five to ten Megabytes of data. Whereas today it is not uncommon
for ordinary home computers to feature something like two hundred Gigabytes of data
space. Applied to forensic pathology this is the equivalent of on average having two
bodies to process twenty years ago, and today on average having about eighty
thousand corpses to examine in each and every crime scene. Most forensic pathologists
would pass out when faced with such a development, but this is reality in computer
forensics. However, processor speed has increased in a similar way throughout the
years, and herein lays the salvation. To put it simply, in order to keep up with the
increasing amount of data, more and more processes have to be automated.

As part of this automation development process this paper focuses on computer

forensic text analysis. There already exists some commercial software for text analysis
and searching, e.g., the dtSearch program [3]. Such programs read through the selected
directories and create indexes, which are later used for the actual searches. Creating
these indexes can take some time, but once this is done searches can be done with
breathtaking speed. When conducting its searches dtSearch utilizes different levels of
text analysis, ranging from regular expression like Boolean searches to fuzzy and
phonic analysis. Such theories form the groundwork for this paper, although angling
the discussion towards a computer forensic perspective. This means that it expands the
current implementations and ideas to encompass computer forensic specifics like the

 5

handling of ambient data, physical level analysis and the applying of degrees of
interest in order to differentiate among large amounts of data.

When deciding how to implement the theoretical discussions, there are a few

considerations. The first question is whether to build upon existing software or to
implement something from scratch. In this case it was a simple question to answer
since there is already a widely used open source computer forensic package available,
namely The Sleuth Kit [4]. Together with the graphical front-end package Autopsy,
The Sleuth Kit presents an in many regards viable option to commercial computer
forensic products like EnCase [5]. The Sleuth Kit constitutes a convenient framework
for further development, as the source code is free to use and modify as long as you
adhere the various licenses accompanying the software. Furthermore it has a large user
base [6], implying it has been thoroughly tried and tested since its creation.

The reasons to concentrate on freely available and modifiable open source

software are simply as follows. As mentioned earlier computer forensic software has
the ability to make or break people's lives in a very profound way, therefore anything
but publicly available source code should be inadequate. This is because such source
code can be scrutinized and tested by the entire computer forensic community, or any
one else for that matter, instead of being only accessible to a small group of developers
within a single company. Consider for example who in their right mind would trust an
encryption algorithm that has not been subjected to the full scrutiny of the research
community with peer-review and publicly available papers? As time goes on this will
only become more of an issue, as more and more processes within computer forensics
need to be automated in order to keep pace with the forever-increasing amount of
information at hand. Further argumentation on the subject of open source computer
forensic software can be found in a paper by Brian Carrier, the author of The Sleuth
Kit [7]. He argues that there need not be a conflict between commercial development
of computer forensic tools and its open source counterpart. By keeping the core
functions open source and freely available for peer-review they will be kept as updated
and efficient as possible. In any case the bulk of most commercial implementation
code does not pertain to these core functions, but on different ways to handle and
present the extracted data. In other words, only some smaller parts of the
implementations need to be open source, which would guarantee the vendors ample
freedom in producing competitive and commercially viable computer forensic
software. Which is exactly the situation with the encryption algorithms mentioned
earlier; the actual core algorithms are well known, so it is the surrounding
environments that separate the different software vendors. This satisfies both the need
for trust in the core functions by the end users and the need for commercially viable
endeavors by the companies financing the development.

 6

2 THE SLEUTH KIT AND AUTOPSY

2.1 An overview of The Sleuth Kit and Autopsy

In the year 2000 Dan Farmer and Wietse Venema released The Coroners Toolkit

[8], a suite of utilities for conducting computer forensic examinations. The suite
quickly gained widespread popularity as it featured quality computer forensic tools and
was distributed as open source. Among the various utilities for investigating and
collecting data were the grave-robber, the main tool used for gathering data, and
lazarus, used to reconstruct previously deleted files. Furthermore, The Coroners
Toolkit included tools for copying files by inode number, listing file system inode
information, copying address space of running processes and handling file time
reports. Its instant success implied that it filled a void within the computer forensic
community, and it showed that open source computer forensic tools could be a viable
and rewarding endeavor, able to compete with commercial and closed source software.

Although being a worthy first foray into open source computer forensics, The

Coroners Toolkit had its share of limitations [9]. First of all, The Coroners Toolkit
could only analyze the same operating system as it was running on, e.g. if you wanted
to analyze a BSD/OS file system, The Coroners Toolkit would have to be installed and
used on a BSD/OS machine. Secondly, The Coroners Toolkit lacked support for a
number of the by far most common file systems, such as NTFS (New Technology File
System) and different versions of FAT (File Allocation Table). And last but not least,
The Coroners Toolkit only handled the block and inode layers, which meant that an
examiner would only have access to a vast array of inode numbers when trying to
figure out the overall file layout, which obviously is somewhat awkward for most
people. These shortcomings prompted the need for further development.

The problem concerning only handling inode and block layers, was fixed when

Brian Carrier released TCTUTILS [10]. TCTUTILS was an extension of The Coroners
Toolkit and featured a collection of tools making mapping of different layers of the file
system possible. This made it possible for examiners to list file and directory names,
paving the way for more efficient and easily performed investigations. The two
remaining problems were addressed when Carrier released The @stake Sleuth Kit
(TASK) with the assistance of @stake [11]. TASK is a collection of computer forensic
command line tools that merges, expands and builds upon the functionality of The
Coroners Toolkit and TCTUTILS. Today development of this tool is independent from
@stake and other commercial or academic organizations, which has prompted Carrier
to change the name of the software package to The Sleuth Kit.

Although The Sleuth Kit is a, in the authors opinion, formidable computer forensic

tool, it is still a command line based utility. In practice this means that, although fast
and efficient for smaller investigations, The Sleuth Kit is somewhat cumbersome to
use when handling larger sets of data. It also means that it can be an awkward task to
handle the level of documentation prowess required when dealing with actual live
cases. This is were Autopsy enters the scene [12]. This package is a graphical user
interface to The Sleuth Kit, designed and developed by Brian Carrier in response to the
just mentioned shortcomings of The Sleuth Kit. Actually, Autopsy is not only a simple
graphical interface for The Sleuth Kit, it also adds further functionality like the ability
to handle timelines and file type sorting, and for easing large scale case management.
In addition to this, Autopsy also provides an easy-to-use interface for the basic Unix

 7

commands grep and strings, by not only parsing program input and output, but
also by automatically mapping the found segments to the files that allocated them
along with their individual status.

All in all, The Sleuth Kit/Autopsy package of today is an outstanding computer

forensic tool, developed with dedication and thorough knowledge and understanding
about the actual needs of a computer forensic investigator. Along with the latest
developments [13] this package is already rivaling the technical capabilities and ease-
of-use of such high-end commercial packages as EnCase. However, as this paper
concentrates on text analysis, it will refrain from further discussions regarding the
overall software of The Sleuth Kit and Autopsy, and simply conclude that this package
was chosen as a platform for the implementation of the coming discussions on text
analysis. The Sleuth Kit and Autopsy are available at [14] and the author strongly
recommends any interested readers to try them out. This paper continues with a short
review of the grep and strings commands, coupled with a discussion on regular
expressions, before proceeding with more specific text analyze phases in the coming
chapter.

2.2 The grep and strings commands

The grep command is an integrated part of most Unix-like systems and is

basically used for searching files for the occurrence of some input pattern. In its most
basic form of use, grep simply searches the input file or files for the exact matches to
the input and prints out the lines containing the given input. What makes grep so
much more than a simple search tool is its ability to handle regular expressions [15].
Regular expressions are used by many Unix-like systems for text handling and parsing
within their commands and utilities; not only grep, but also sed, awk, vi and
procmail to name but a few. The programming language Perl also features one of
the more extensive implementations of regular expressions. A comprehensive and
thorough review of all features of regular expressions is far beyond the scope of this
paper and interested readers are encouraged to seek enlightenment elsewhere.
Although grep is a magnificent utility in its own right, as a standalone tool it can be
rather cumbersome when dealing with computer forensic evidence, as there might be
no actual file system to examine, just massive chunks of data imaged from a suspects
hard disk drive. This means that an examiner manually has to perform the mapping of
finds to actual files and folders, which can be rather time-consuming and error-prone.
As mentioned before this is done automatically when using Autopsy, which saves time
and reduces the possibility for error when handling the evidence.

The strings command is a tool mainly useful for examining the content of non-

text files, e.g., executable files, music files or picture files. When used, strings
prints the printable character sequences it finds throughout the file. By default the
minimum length of these strings are 4 characters, but using input flags when calling
strings can change that. There is not much more to comment on this utility, a
simple but sometimes very useful and handy little tool. Autopsy uses it automatically
in conjunction with grep when dealing with non-text files.

 8

3 COMPUTER FORENSIC TEXT ANALYSIS

3.1 An overview of computer forensics text analysis

Traditional data search technologies are based upon looking for some exact match

of the data being searched for and although this behavior is reasonably fast and
effective as a standalone process, it is somewhat insufficient in a computer forensic
domain. This problem can in some respects be alleviated by the skillful use of regular
expressions, as discussed in chapter two, but to form a conclusive solution further
consideration has to be done. This chapter will discuss both the techniques that can be
covered within the realm of regular expressions and those who need further
implementation.

3.2 Boolean style searching

As mentioned in the previous chapter, regular expressions can in principle handle

more or less all Boolean searches, although the use of a Boolean search engine can to a
great extent simplify the performance of such searching. Boolean searches include the
AND, OR and NOT parameters, which are taken from classic logic theory [21].
Among literature dealing with Boolean searching within the text analysis domain, one
sometimes comes across such concepts as "phrase searching" and "proximity
searching". Phrase searching is simply done by grouping words together into sentences
and using these, preferably by using AND searching. While proximity searching tries
to locate occurrences of a word within certain distance from a second word, this kind
of search is henceforth labeled WITHIN searching. These four search types (AND,
OR, NOT and WITHIN) form the basis of the Boolean search engine, and by utilizing
their capabilities more abstract searches like "narrow", "broaden" and "exclude" can be
performed. Among text analyzing literature one can find several references to different
kinds of Boolean search types, but they can mostly all be traced back to the
functionality of these four core functions. Besides supplying the possibility of rather
complex searching in their on right, a functional Boolean engine is important when
implementing further functionality such as natural language systems, as these
transparently make extensive use of such search methods.

3.3 Thesaurus searching

Consider, for example, searching for a word like "delicious". This word, like most

other words, has an array of synonyms and words that are more or less closely related
in their meaning. The basic idea of thesaurus searching is to automatically include all
these synonyms and related words into the search, thus expanding the chance for a
successful and relevant find. Obviously this is done by using a thesaurus database of
some kind. Before the actual search starts, the search program accesses this database
and retrieves the relevant words and includes these words into the search. This is not a
very difficult thing to implement, only access a database and receive a few extra words
to add into the search. The grimness of it all would only hit when trying to actually
assemble the database itself into any degree of usefulness, seeing the immense wealth
of words in the English language. Luckily this has already been done.

 9

WordNet [16] [17] is one such database, developed and maintained by the
Cognitive Science Laboratory [18] at Princeton University [19]. To cite the homepage
of this project:

“WordNet is an online lexical reference system whose design is inspired by
current psycholinguistic theories of human lexical memory. “

Not only is it a great online resource for all would-be writers, it is also available

for download to be incorporated in projects such as this. Using such a database it is not
difficult to incorporate the power of thesaurus searching into The Sleuth Kit. With the
implementation of WordNet availability and returning to the opening example of
"delicious", a thesaurus enabled search might thus include such words as delectable,
luscious, pleasant-tasting, scrumptious, toothsome and yummy.

Considering the computer forensic environment there can be many cases featuring

similar characteristics, and not all of these might be included in a general thesaurus
database covering an entire language. An example of this might be when dealing with
cases including illegal substances such as anabolic steroids or drugs. By including a
user-defined thesaurus in addition to the general one, specific word relating to such
topics can be included, thus keeping pace with the forever increasing number of
different substances to recognize or different street vocabulary and linguistics not
usually found in a more general thesaurus. Other examples might include adding an
array of different explosives, like C4, trimonite, amatex, cyclotol, dynamite and so on,
whenever conducting a search for the word bomb. Given a generally accepted standard
for interfacing such user-defined thesauruses, computer forensics related databases
could be distributed among law officials and forensic personnel in order for all to keep
up to date.

When discussing a standard for such a user-defined database, it is the author's

opinion that the interface used by WordNet should be considered. The reason for this
is that WordNet is already used to a great extent within search software, e.g. dtSearch
incorporates WordNet in order to handle its thesaurus searches, and it must thus have
proven to be a reliable piece of software [3]. Furthermore research and development
within the WordNet project is ongoing and thriving, thus providing confidence in the
continuing validity of the system. And of course, let us not forget one of the more
important features of WordNet, it is free to use and modify as long as you adhere the
license accompanying it.

3.4 Stemming

Stemming is the task of normalizing a certain word into its original status, the root

or stem. This is done by removing all affixes contained in the word, e.g. "considering"
becomes "consid" when the "-ering" part is removed. The reason for doing this is
simply that a search using stemmed words will be more likely to turn up relevant hits.
Using "considering" as the search word would miss both "considered" and "considers",
unless you stemmed the word first. It might seem strange to stem "considering" into
"consid" instead of "consider", but the reader should bear in mind that stemming is
exclusively done in order to improve performance and the stemmed words might not
always be linguistically pleasing to behold.

There exists a variety of different algorithms for stemming words. However, many

of them can be traced back to the Porter Stemming Algorithm, devised by Martin
Porter in the late seventies and early eighties [20]. The algorithm used in the

 10

implementation derived from this paper features the Porter Stemming Algorithm. In
addition to just conflating the search words before each search, it is also possible to
stem all words within the process of building the index. This reduces the size and
complexity of the index, making for more efficient and faster searches, and will be
discussed further in the section concerning indexing.

3.5 Natural language

Natural language processing has proven to be somewhat more complicated that as

first anticipated when research in this area began in the late fifties. Although
experiencing large difficulties in producing systems that can handle general language
understanding, natural language processing has had some success within certain, well
defined, areas. Two such areas are Information Retrieval and Text Categorization,
which both are relevant to computer forensic text analysis.

Most modern Information Retrieval systems use a vector-space model in order to

find what they are looking for [21]. They treat every list of words as a vector with n-
dimensions, where n is the number of unique words in the search data. The presence of
a word in a certain list is indicated by the value 1, and the absence of a word is
indicated by the value 0. Both search input and the search data is treated in this same
way, and therefore performing a search is simply a matter of comparing these vectors.
The nice thing about the vector-space model is that it allows for ranking of the search
hits based on their closeness to the search input. In order to make these searches more
relevant it is common to apply weights to each term, based on, for example, how often
they appear within the total search data or their closeness to other highly relevant
words. This is a rather basic way of analyzing text, as more or less all information is
gathered from the words themselves, and the syntax and semantics of the sentences
that they belong to are mostly discarded. However, this is often more than enough to
capture the essence of a text document, and thus correctly evaluate its likeness to a set
of search words.

Text Categorization is a related subject, and one which natural language

processing has proven rather successful in. What Text Categorization does is to
examine if a certain text belongs to a fixed topic category or not, hence the name. The
success of Text Categorization is due the fact that the categories are fixed and the
system can thus be tuned towards these respective interests. A prominent example of
such application is the numerous online news services that collect and provide
subscribers with information about user-defined topics. The use of such text analysis
methods are only limited by the imagination of the user, e.g. surveillance agencies
could, and probably already do, make use of such systems while supervising online
communication.

The areas where natural language processing has been successful during the last

few years all share two common treats; they focus on a single domain and a single
task. Neither of these excludes the possibility for successful implementation of such
systems within a computer forensic domain. Both Information Retrieval and Text
Categorization are examples of such areas, and both are applicable in the computer
forensic field.

 11

3.6 Fuzzy searching and Phonic recognition

One very common task within computer forensic investigations is to analyze

residual data pertaining to communication between people. This data can for example
be e-mail messages, IRC session logs or ICQ data files. Due to the fact that many
people seem to have a somewhat slack attitude towards linguistic correctness when
composing these messages, they are rather likely to contain misspelled words, which
may in turn make it more difficult to analyze the data using conventional methods.
This is especially true since it is nearly always the significant words, as opposed to
noise words as "or" and "he", that people have a hard time spelling, consider for
example "nitroglycerine". A fuzzy search engine helps to alleviate this problem as it
provides the ability to find words that are slightly misspelled, or even extremely and
utterly wrong, all depending on the chosen level of fuzziness. These systems are
usually based around a fuzzy expert system, which takes a first input and gives it a
degree of likeness in relation to a second input. The range for these degrees usually
lies between 0.1 and 1.0, but is often converted into the range of 1 to 10 within the
graphical interface for the convenience of the human user. A likeness of 2 indicates a
very low resemblance, and a likeness of 9 is given to an only slightly misspelled word.
Based on this it is easy to filter the output at the desired level. Fuzzy searching works
both ways, in that a misspelled search word will find a correct word in the search data.

Phonic recognition is somewhat similar. Two words are said to share a phonic

resemblance when they sound alike but differ in spelling. This is usually implemented
in a similar way as the fuzzy system; in fact the implemented expert system can often
be used, although with another set of rules. When used in conjunction with fuzzy
searching these two techniques form yet another set of tools with great use within most
text analysis processes.

3.7 Indexing the search data

The concept of index based searches is as follows: Instead of accessing the entire

amount of search data every time a search is being performed, a list or index of all
significant words is constructed beforehand and it is this index that is then accessed in
every search. This will obviously introduce a great performance boost since the
amount of unique words is finite while the data to be searched is limited only by the
size of the storage space at hand. For example, there is no need to access the entire
hard disk drive during every search since all significant metadata is compiled into the
index where it is easily and efficiently accessible. This metadata contains information
about locations, frequency and so on about all significant words; exactly what it
contains is dependent on such things as performance considerations and intended use
of the system.

What constitutes a significant word is often based on a user defined list containing

all words regarded as line noise, e.g. "if", "and", "or" and so on. In most cases there is
simply no need to know the exact location of the two hundred thousand unique
instances of the word "be". Since a substantial part of most text masses are composed
of such line noise, there lies a great performance benefit in filtering them out. And
since the file defining this noise is user controlled, it is easily modified should the need
to examine all instances of "have" ever arise.

The idea of using index-based searches within computerized search engines is not

a new one; libraries, scientific databases and web-based search engines to name but a
few examples all use index tables in order to improve performance and overall

 12

efficiency. After all, no-one expects Google [22] to rummage through the entire
Internet every time someone presses the search button!

Stemming can be used when constructing the index to further enhance the

performance by assuming that words with the same underlying stem share similar
meaning, thus further cutting the size of the index. However, this process is somewhat
error prone, and the actual performance benefits gained are to some extent forfeit by
the errors introduced into the performed searches [23]. The level of acceptance of such
errors is dependant on the situation at hand and under certain circumstances index
stemming is desired and should be available. An alternative use of stemming is to
refrain from stemming the actual index, and only stem the search words, thus widening
the range of hits during searches. This latter behavior can especially be desirable in the
beginning of an examination, as a method of gathering broader insights into the overall
status of the data mass, prior to more fine-grained searches.

The main benefits of using an index-based system for analyzing data can be

summed up into one word; speed. Imagine having two hundred Gigabytes worth of
data to analyze, and every time the examiner presses the search button the system has
to access every single part of that data. Even with today's fastest hard disk drives, this
would be enough to infuriate the most patient forensic examiner. Obviously all the
data has to be accessed at least once when creating the index, but when this process is
complete any following searches can be executed with significant performance
benefits compared to conventional search methods. The larger the size of data to be
analyzed the larger the relative performance benefit of using index-based searching
compared to not using indexing. The following chapter will among other things
present conclusive evidence in favor of this allegation.

 13

 14

4 THE IMPLEMENTATION

4.1 Overview of the implementation

This chapter starts by explaining the construction of the index and thereafter

continues to examine the use of the so far implemented aspects of the previously
discussed analysis methods. Diagrams displaying actual program run characteristics
will be presented in order to either support or discard ideas and suggestions made
throughout this paper.

The computer used to perform the following tests was a Pentium 4, 2.80 Gigahertz

machine with 512 MB of RAM. The exact same machine was used to boot both the
Windows XP operating system and the FreeBSD 4.6 operating system, in order to get
a consistent hardware environment for the tests. The dtSearch program was used in the
Windows XP environment in order to produce comparison data. All further proof of
concept implementations within this project was done in ANSI C and tested on the
FreeBSD platform. It should be clear from the context in which they are found if a
diagram pertains to dtSearch runs or originate in project derived implementations.

4.2 Indexing the data

As stated in earlier chapters the main reason for using index based searches it to

speed up the process of multiple searches by removing the need to access the entire
search mass in every unique search. The actual construction of the index file takes
approximately the same time as one single conventional search, seeing that this is the
only time the entire mass of data needs to be accessed. During this construction the
metadata of every significant word within the data is recorded and assembled into the
index files for future access.

The core size of the resulting index file in respect to the original text mass

decreases as the original text mass grows bigger and bigger. This is simply a
consequence of the fact that all languages feature a finite amount of words, and as the
search data expands more and more words found will be duplicates, and will thus
already be present in the index files. This however, is not the entire truth as the overall
size of the resulting index files is largely dependant on the amount of metadata
selected to represent every instance of a given word, at the very least this metadata
needs to contain information about the location of the word. A shrewd representation
of this data is needed in order to prevent the index file growing too large relative the
size of the original data mass. A diagram comprising a series of tests using the
dtSearch program is presented below in Figure 1 to illustrate the above discussion.

 15

0

20

40

60

80

100

0 20 40 60 80 100

Size of
index in
Megabyt
e

Size of search data in Megabyte

Figure 1. Shows the relation between search data size and index size.

In Figure 1 the X-axis represents the size of the original data mass in Megabytes,

while the Y-axis show the size of the resulting index file compilation, also displayed in
Megabytes. As is clearly visible the data/index file size ratio follows a more or less
linear dependence, and thus the absolute amount of storage size gained increases with
the size of the original data mass, while its relative counterpart does not. The reason
for the linear development is that every found instance of a word is accompanied by
certain metadata, increasing the size of the index files in a linear fashion. This in turn,
implies that the relative time saving during multiple searches increases along with the
original data mass. One might be forgiven for thinking that the relative time saving
will be like the relative size saving, i.e. linear. However, remembering the previous
discussions pertaining to index searching, the observant reader realizes that the core
size of the index files does not follow this linear dependence. To put it simply; the
larger the size of the original data mass, the better of an idea it is to index it. Figure 2
shows the data graph of a selection of test runs using the project derived
implementation, and illustrates this point in a very obvious manner.

 16

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0 1 2 3 4

Non-Index Search

Index search

Time in
seconds

Size of original search data in Megabytes

Figure 2. Compares the speed of Non-Index search vs. Index search.

Figure 2 clearly shows the enormous advantages of using index based searches.
The X-axis represents the size of the original data mass, while the Y-axis shows the
time it takes to rummage through the said data. The non-index search is obviously
linear since doubling the amount of search data will double the time it takes to
examine it, whereas the index based search will alleviate the need to search through
endless amounts of word duplicates. In fact, the time it takes for the index based search
to complete levels out as the unique-word count reaches that of the total amount of
available words in the given language, thus adding no further search time when adding
arbitrary amounts of further search data. Obviously the metadata part of the index
files will continue to expand in a linear fashion while adding further search data, but
this does not affect the time it takes to search the core index files.

Previously it was argued that the use of a noise file would introduce some

performance benefits. The project derived implementation shows that this is indeed the
case. The main benefits of using a noise file lies in the index construction process, and
only to a smaller degree in the amount of time it takes to perform the subsequent
searches. The resulting index files will shrink by a large margin resulting in a great
save of storage space, which might often be a non-trivial issue when dealing with
massive amounts of original search data. However, the core part of the index files will
not shrink by a substantial amount, simply because the absolute majority of all words
are generally not considered line noise, thus not generating any greater benefits in
search time. But, as mentioned, the fact that a vast amount of storage space can be
saved should encourage the use of noise files.

 17

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

The Shining -
noise

The Shining -
data

The Stand -
noise

The Stand - data

Size in
Megabytes

Figure 3. Shows the amount of noise/data ratio in The Shining and The Stand

Figure 3 shows the amount of line noise compared to significant data in two

popular Stephen King books; The Shining and The Stand [24]. Although both these
books contain a massive thirty-four percent line noise, this should not be taken as a
dismissal of the literary capabilities of Mr. King, as this is a normal average in English
fiction. Obviously the amount of noise filtered out is directly dependant on the content
of the noise file, which is used when processing the search data. Keeping the noise file
user defined is an absolute requirement, as this ensures that it can easily be modified to
fit any situation that might arise. All in all, Figure 3 clearly illustrates the advantages
of using a noise filter.

4.3 Thesaurus enabled searches

As mentioned in chapter three, the thesaurus of choice is the WordNet bundle.

This package contains an entire application programming interface for using its many
features within your own implementations. However, this proved to be somewhat
cumbersome to incorporate in an orderly fashion into the current project derived
implementation. The objective of this implementation is simple and clean; too quickly
and efficiently produce synonyms and related words or expressions to any given
search word. And thus a large portion of the code in the WordNet package was simply
not needed.

The solution to this dilemma was to extract only the actual database files from the

WordNet package, and implement a new and lightweight interface in order to access
these files. This arrangement provides only the necessary features to accomplish the
given task, thus reducing the required amount of code into a bare minimum. This
produces a fast, reliable and time-efficient piece of software, while keeping it
reasonably easy to maintain.

There should be three possible options when using the thesaurus search. First, and

most obvious, is the option to not use it at all. Many times there might not be any use
for this kind of search, and the possibility to ignore this behavior should always be

 18

available. Secondly, the option to use automated thesaurus searches. This option
automatically accesses the database, extracts the relevant data and then proceeds by
inserting this data into the following search. This all happens without any interaction
from the user, hence the inclusion of the word automated in this option. The third
option is to allow for a user defined thesaurus search. The database is accessed, but
instead of simply including all output into the search, the user is prompted to select the
desired strings from the database output before inclusion into the following search.

The above discussion is applicable not only to the database files extracted from the

WordNet package, but also to the user defined relevant-word databases introduced in
chapter three. These special databases should by all means and purposes be
incorporated in an identical fashion as the hitherto discussed WordNet database files.
And using the lightweight interface ensures that this incorporation will be a
streamlined process, since this implementation, unlike the WordNet package, has had
this inclusion on the agenda all along.

4.4 Boolean searches

Implementing a Boolean search engine is somewhat like implementing a

lightweight compiler. The different operators, e.g. AND or NOT, do not present any
problem in themselves while implementing. However, the code needs to be able to
handle all kinds of combinations of these single operators in conjunction with
parenthesizes and actual data, which might require some care. Consider for example
the difference of the following statements:

 (donald AND goofy) OR mickey
 donald AND (goofy OR mickey)

The speed of a Boolean search is heavily dependant on the nature of the search, for

example an OR search can produce a result at the very instant it finds the first
occurrence of one of its data components. A NOT search, on the other hand, has to
examine the entire data mass in order to establish the fact that its negative data
component is not present there. Before embarking on the task of producing massive
regular-expression-like Boolean searches, one should be aware of the fact that Boolean
searches are coupled with certain costs as far as time goes. The actual cost is largely
dependant on the structure of the index files, since Boolean searches generally use
metadata to a large extent in order to resolve the search. For example, consider the
following statement:

 donald w/10 duck

This statement searches for all occurrences of the string "donald" followed by the

string "duck" no more than 10 words away. In order to resolve this search, the Boolean
engine needs to be able to calculate, not only the actual presence of the two strings, but
also their exact locations relative each other. Figure 4 gives some examples as to the
time cost introduced by a sample of Boolean searches tested within the project derived
implementations.

 19

0

2000

4000

6000

8000

10000

12000

Sing
le

se
arc

h:
de

ath

Sing
le

se
arc

h:
afr

aid

Sing
le

se
arc

h:
do

bb
el

de
ath

 A
ND af

rai
d

de
ath

 A
ND do

bb
el

de
ath

 N
OT do

bb
el

(de
ath

 A
ND af

rai
d)

NOT do
bb

el

de
ath

 O
R do

bb
el

de
ath

 O
R do

bb
el

OR af
rai

d

de
ath

 O
R do

bb
el

OR af
rai

d O
R ka

ka

de
ath

 O
R do

bb
el

OR af
rai

d O
R ka

..

afr
aid

 O
R do

bb
el

do
bb

el
OR sm

ak

Time in
microseconds

Figure 4. Shows the search time for different kinds of Boolean searches

The text mass used when constructing Figure 4 is the noise ridden The Shining by

Stephen King. The Y-axis represents the search time in microseconds. The first three
bars show single searches which halt when they find the first occurrence of the given
word. As can be seen, the first occurrence of the string "death" is found rather early in
the text, which should come as no surprise to fans of Mr. King. The first occurrence of
the string "afraid" is found further into the text, and the string "dobbel" is not present
at all within this book which thus illustrates the time it takes to traverse the entire text
mass. The two following examples are AND searches which also halt when the search
is true, and as can be seen, the behavior of these are as one might expect. The "death
AND afraid" search halts after first finding the string "death" in the beginning of the
text, and later on the string "afraid", thus taking only slightly longer to perform than
the single search for "afraid". The "death AND dobbel" will return false, since
"dobbel" is not present, and furthermore, it will once again have to traverse the entire
text mass to establish this very fact. This is also the case with the following NOT
searches, as they both need to make sure that any negative string is not present in the
text mass. What then follows is an array of OR searches which halt when an
occurrence of any of the input strings are found; as can be seen the first four halt on
"death", the fifth on "afraid" and the last one returns false, since neither of the search
strings are present in this fine piece of literature.

 20

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

death W/30 afraid death W/30 dobbel sm ak W/30 dobbel

Time in
microseconds

Figure 5. Show s WITHIN search times.

Figure 5 shows a selection of WITHIN searches, like the previously discussed
"donald w/10 duck" example. The original text mass is once again The Shining by
Stephen King, and the Y-axis yet again represent the amount of microseconds the
search took to complete with the project derived implementation. As before, "death"
and "afraid" are present in the text, while "dobbel" and "smak" is not. They all take
approximately the same time to complete due to the simple fact that this specific
implementation tries to find every occurrence of the search data, instead of halting at
the first occurrence. This behavior is encouraged by the fact that this can be used
within natural language searches in order to construct levels of relevance. As stated
before, the problem with WITHIN searches is that they, to an even greater extent than
other Boolean searches, make extensive use of metadata in order to resolve their
search. The current project derived implementation lacks an efficient way to handle
this, and future research is needed to ensure this problem is solved in a gratifying
manner. However, the current implementation is still several times faster than the
equivalent search performed with the dtSearch program, which noticeable hiccups on
such searches.

4.5 Stemming

The notion that stemming is of great use in text analysis is not being questioned

here; the question to ask is rather what to stem and when to stem. The answers to these
questions are somewhat dependant on the intended use of the final system, but as this
paper only concerns itself with computer forensic settings it will disregard use outside
of this environment. This, however, does not mean that the results of these discussions
are not valid in other domains as well.

Continuing this line of thought leads to the understanding that the index files

themselves should not be stemmed. The reason to stem index files would be to further
minimize their size, but the herein gained performance benefit does not in any way
compensate the impending possibility of losing valuable data. So, to answer the
question about what to stem, stemming should only be used when manipulating actual
search data. This conclusion also implies the answer to the question about when to
stem, i.e. stemming should be used in real-time within the actual search. This behavior

 21

minimizes the risk of error, since the operator at hand will have the opportunity to
manually filter the unabridged output data, while at the same time utilizing the benefits
of stemming.

The stemming method of choice within the project derived implementation is of

the Porter Stemming Algorithm derivation. A full definition of this algorithm can be
viewed here [25]. As only the search input strings are being stemmed, there will only
be an insignificant time penalty when enabling stemming. This follows, first of all, the
fact that the actual stemming process is rather efficient and fast in itself, and secondly
because the amount of words to stem will be kept at an absolute minimum which
complies with the previously discussed tendency to introduce errors. The only
occasion when stemming might display any kind of delay is when used in conjunction
with natural language searching, where there are large quantities of search input to
process. In this case it might be worthwhile to note that, just as one might expect,
stemming follows a very linear pattern when confronted with growing amounts of
input data. Figure 6 clearly illustrates this pattern.

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,1 0,2 0,3 0,4 0,5 0,6
Time in seconds

Size in
Megabytes

Figure 6. Shows the time/size ratio when stemming.

 22

5 DISCUSSIONS AND FUTURE WORK

The storage capacity of modern computers is growing at an enormous rate, and

although most people applaud this development, it obviously increases the workload
for computer forensic examiners at a similar pace. As the disposable time for each case
cannot be expected to increase, the only imaginable solution is to work faster! This
insinuates raising the levels of automation involved in the forensic processes. No
forensic examination is quite like any other, and the flexibility, intuition and pure
knowledge of a human computer forensic expert cannot, in the present day, be
rationalized away. This, however, does not mean that certain aspects of a computer
forensic investigation cannot be automated in order to speed up the process. Recent
years have seen a growing awareness concerning computer forensics as a legitimate
science and a valid addition to the forensic arts as a whole.

This paper concentrates on the investigation of forensic text analysis techniques,

and how one might streamline the process of examining large amounts of text. And as
observant readers no doubt have already gathered from the previous chapters, there
still remains a large amount of work in order to produce a working product. A large
part of this work lies in actual implementation; getting the code together into one
package, introducing a stable frame-work of error-checking, implementing at least a
rudimentary level of user-friendliness and so forth. Another important part in the
continuation of this project is to further research the theories of natural language
processing which in itself is a very broad and extremely interesting subject. Chapter
three discusses the computer forensic adaptations within natural language processing,
and further research and implementation is needed in order to paint a conclusive
picture of their validity. The positive impact of a fully functional computer forensic
natural language processing system cannot be overestimated. This will enable
investigators to discover patterns and shapes within large text masses, thus creating a
way not only to analysis data after a crime is committed, but also to enable the
possibility to preemptively discover possibly interesting activities.

As far as the indexing engine is concerned there is some further consideration to

be done. The present implementation uses human-readable index files, i.e. it saves the
output in ordinary text files. This was done in order to save implementation time and
to produce easily viewed index files, which was of great practical value when
performing the tests. A fully developed indexing engine, however, does not need this
behavior. There will most definitely be a switch to binary format in the index files, as
this result in a further minimization of the size of the index files and also helps in
speeding up the process of searching.

Continuing the examination of the current indexing engine, a serious shortcoming

presents itself; namely the lacking support of proper character encoding. As it is the
engine only handles normal printable ASCII characters, which is fine as long as the
text to be analyzed is written in English. Unfortunately however, people have been
known to use other languages as well. One solution to this problem is to implement
support for Unicode. Only then will the system be able to handle more or less all
written languages in use today; including the these days highly topical language of
Arabic, the linguistic pleasantries of Thai and the ever musical language of Swedish.
However, since Unicode contains such an enormous wealth of possible characters,
there exists the theoretical problem that this might create hopelessly large index files.
Further research is needed in order to establish how much of a problem this is in real-
life situations and how to counter the problem. Possible solutions include language
filter systems that recognize different languages and automatically separate the internal

 23

structure of the index files. Again, this is of little importance for the completion of the
tests done in conjunction with this paper, but if there is to be any hope of this software
ever transforming into a functioning application this is a situation that most certainly
will have to be resolved.

The use of stemming in conjunction with indexing and searching has been

researched for many years. However, its use in relation with computer forensic text
analysis has to the best of the authors knowledge never been thoroughly investigated.
Stemming does introduce a certain margin of error, a margin of error seemingly rather
acceptable within most previous applications. However, within computer forensics the
impact of these errors can be pivotal, and thus has to be circumvented while at the
same time utilizing the positive properties of stemming. The reasoning throughout this
paper shows that this is done by abandoning stemming-enabled indexing and only
using stemming in conjunction with post-indexing activities like different kinds of
searching.

Different kinds of Boolean searches are often required when dealing with the task

of analyzing larger amounts of data. By utilizing the efficiency factor acquired through
indexing, it is possible to perform these searches with great speed. There is quite some
variation in the amount of time required for different Boolean searches to complete.
Most notably the WITHIN search takes some time to resolve, as this specific search
needs to access more metadata within the index files than the other search styles. The
inclusion of Boolean style searching might help people inexperienced with the use of
regular expressions to perform more advanced searches. Most of the Boolean searches
can be done with regular expression when used with tools as grep, sed and awk, but
the Boolean engine removes the need for the examiner to be fluent in the use of those
programs. This is important as computer forensic examinations might not always be
performed by computer experts, but rather law enforcement officers trained only in the
use of specific forensic tools. Furthermore, the Boolean search system can be used by
the natural language engine when constructing relational vectors in order to label
different text with degrees of interest.

Generally the aim of natural language processing is to properly understand a given

language, an endeavor that has proven more difficult than first expected when such
research was started in the late fifties and early sixties. However, natural language
processing has proven to be rather successful within specific and well defined domains
[21], and computer forensics might be one such domain. The first step in computer
forensic language processing is to, given a certain input text, be able to evaluate search
data in order to find similarities and otherwise interesting sections. This is not overly
difficult to accomplish in a basic manner and should actually not be confused with
proper natural language processing. This first step is well understood and forms the
theoretical border of this study. The second step introduces somewhat more of a
problem, since this step involves giving up the luxury of the input text and having the
natural language engine by itself categorizing text based on degrees of interest, and as
might be expected, this is where one hits the brick wall. But given a projectile with
sufficient momentum any brick wall will crumble.

The implementation of the fuzzy expert system used in the process of identifying

misspelled words is not entirely complete, and needs further work to be brought up to
the expected standards. This, however, should not be much of a hassle, as the
underlying theory is well understood as discussed in chapter three. This is to some
extent coupled with phonic text analysis in that it uses similar techniques to resolve the
process. The fuzzy expert engine will be able to handle phonic analysis as well, albeit
with a modified set of rules. The objective is to create an efficient fuzzy engine with an
easily maintained and modifiable rule-set system.

 24

Further file type support is also on the agenda, such as Outlook mail files, Word

and PDF documents and different types of compressed files. It would indeed be quite a
task to implement support for the entire plethora of imaginable and unimaginable file
types, but the most common will most certainly be added in the near future with others
to follow later on. Talking about different file types; there sometimes arises a need for
exporting the search output into certain formats, like for example Excel charts or SQL-
style databases, for further processing. Although this is not a prioritized addition at the
moment, it will most likely be addressed later on in the development process.

All present code is implemented with a minimum of fuzz and with a basic

command-line interface, which in turns helps in keeping the software fast and time-
efficient. Presently the user-friendliness is not up to the standards required by a tool
one expects anyone to use, but this should change as the tool matures further during
the near future. User-friendliness was neither an objective nor a requirement for the
completion of this paper.

There exist several reasons why open source is a preferred paradigm when

developing software for computer forensic applications. The most important reason is
one that holds true for most computer security related development, namely that if
there is one thing that history has taught us, it is that proprietary and hidden security
implementations nearly always fail [26]. Such technology instead needs to be properly
peer-reviewed and thoroughly examined by the security community in order to stand
the test of time [27]. Observe that this discussion only refers to the actual core
implementations of the security critical system; the vast amount of code that handles
user interfaces, file type support or other additional program features is where the
possibilities of financial gain should lie. Some people feel that certain aspects of the
solutions and algorithms used in computer forensics should be kept hidden in order to
prevent the utilization of possible flaws in these solutions; they feel that if the
functionality of a certain solution is known it can more easily be circumvented. This
allegation, however, is null and void. Any algorithm or software solution pertaining to
computer security whose entire success is dependant on the functionality of said
algorithm being kept secret is flawed, and will fail.

 25

6 CONCLUSIONS

The Sleuth Kit and Autopsy package, though undoubtedly an excellent computer

forensic tool kit, lack certain key features when performing text analysis. When
dealing with text analysis Autopsy acts as an interface for the grep and strings
commands, and in addition to this automatically handles the mapping of finds to actual
files and folders. Although the grep and strings commands, coupled with the
might of regular expressions, form a powerful tool in their own right, they cannot hope
to match the sophistication of high-end commercial search tools. One thing in
particular that The Sleuth Kit lack is the ability to handle text analysis based indexing.
This means that every time an examiner hits the search button, an entire new search
will commence, which in turn can be rather time-consuming if the data at hand is some
hundred Gigabytes in size. Seeing that multiple searches are more of a rule than an
exception, this is a serious drawback that needs to be addressed. Furthermore, there is
a need for expanding the search capabilities to handle such concepts as natural
language searching and fuzzy and phonic searches.

Among the various conclusions to be drawn from this study the ones pertaining to

indexing hold the most value. Proper indexing techniques are vital to the future
success of automated computer forensic text analysis, as they introduce an enormous
advantage through their speed and overall efficiency. As the average amount of data in
every computer forensic investigation grows, the only hope to handle the situation
seems to be through shrewd use of indexing. The tremendous speed advantage
obtained with indexing compared with non-index based forensic examinations has
been proven conclusively through this study.

One problem found concerning indexing is the actual size of the resulting index

files; depending on their desired content they can grow into as much as half the size of
the original data. When dealing with several hundreds of Gigabytes of original data, it
is not hard to imagine the implied practical conundrum. Using binary index files helps
alleviate this problem to a certain extent, along with the added benefit of even further
speeding up the process of searching the index files. Another way to mitigate the
situation is to apply a noise filter on the search data while indexing. This study shows
that the size of the resulting index files can be reduced with more than thirty percent
by noise-filtering the indexing process of a normal English text of any greater length.
Applying noise filtering does not speed up the consequent searches by any greater
margin, its main benefit lies in the reduction of needed storage capacity in order to
facilitate the index files.

The use of stemming in the indexing phase does further minimize the size of the

resulting index files, but the level of error introduced, slight as it might be, is found to
be somewhat unacceptable within a computer forensic domain. By only enabling
stemming during post-indexing analysis this problem is avoided, i.e. only the search
input strings should ever be stemmed.

A competent Boolean engine helps when performing more advanced searches,

because it alleviates the need for any greater knowledge in the use of the somewhat
cumbersome regular expressions interface. Used in conjunction with indexing it
enables sophisticated searches to be performed with blistering speed.

The inclusion of a fuzzy word engine enables the ability to search for misspelled

words, which is of great importance within a computer forensic investigation. The
reason for this is that many text masses of high relevance in such investigations, such

 26

as e-mail messages and ICQ sessions, are highly prone to contain misspellings due to
many peoples lax attitude towards linguistic correctness while composing such
documents. A fuzzy spelling system helps the investigator circumvent this problem to
a high extent. The ability to include thesaurus searches also helps in finding allusive
text segments, as this incorporates synonyms and longer strings with similar meaning
into the search.

The amount of code presently implemented is by no means staggering in any way,

only about 1500 lines of code at the moment. This number will no doubt grow at an
alarming rate when the work of inserting this code into The Sleuth Kit package
commences. As it is the code is not ready for production level usage, among other
things more robust error-checking and boundary area testing is needed. The main
purpose of an implementation such as this is not to produce commercially viable
software with all user-needs being catered for, but rather to implement the core
functionality of the theory within the paper in order to test named theory. That being
said, the seed for an efficient and ultimately usable piece of software is definitely
present, as is indeed the need within the open source community for such an endeavor.

Following the discussions throughout this paper it has become the authors’ firm

conclusion that the only viable route for computer forensics is open source, extensive
peer-reviewing and openly available research. The academic community has to
embrace computer forensics to a greater extent for this scheme not to fail, seeing that
commercial enterprises, with few exceptions, seem to have a hard time comprehending
the importance of this line of thought. The last few years have seen computer forensics
play an increasingly important part within the forensic community, and as our society
becomes more and more saturated with digital and online devices and applications this
will become even more apparent. Computer forensics will face a plethora of exciting
challenges during the coming years, and the road to finding their corresponding
solutions certainly seems to be an interesting one.

 27

7 REFERENCES

[1] Inman, Rudin. Principles and Practices of Criminalistics, 2000.

[2] Warren G. Kruse, Jay Heiser. Computer forensics: Incident Response Essentials, 2001.

[3] http://www.dtsearch.com

[4] http://www.sleuthkit.org

[5] http://www.encase.com

[6] http://www.fox-it.com/survey/

[7] Brian Carrier. Open Source Digital Forensics Tools: The legal Argument
Available at:
http://www.atstake.com/research/reports/acrobat/atstake_opensource_forensics.pdf

[8] http://www.porcupine.org/forensics/tct.html

[9] http://www.sleuthkit.org/informer/sleuthkit-informer-1.html

[10] http://www.cerias.purdue.edu/homes/carrier/forensics/index.html\#tctutils

[11] http://www.atstake.com/

[12] http://www.sleuthkit.org/autopsy/index.php

[13] http://www.sleuthkit.org/informer/sleuthkit-informer-3.html

[14] http://www.sleuthkit.org/sleuthkit/index.php

[15] Jeffrey, E. F. Friedl. Mastering Regular Expressions, 2002.

[16] http://www.cogsci.princeton.edu/~wn/

[17] Christiane Fellbaum et al. WordNet, An Electronic Lexical Database, 1998.

[18] http://www.cogsci.princeton.edu/

[19] http://www.princeton.edu/

[20] Porter, M.F. An algorithm for suffix stripping, 1980

[21] Stuart Russel, Peter Norvig. Artificial Intelligence: a Modern Approach, 1995.

[22] http://www.google.com

[23] C.J. van Rijsbergen Information Retrival, second edition, 1979

[24] http://www.stephenking.com

[25] http://www.tartarus.org/~martin/PorterStemmer/def.txt

 28

[26] http://www.microsoft.com

[27] http://www.openbsd.org

