
GDB QUICK REFERENCE GDB Version 5

Essential Commands
gdb program [core] debug program [using coredump core]
b [̄le :]function set breakpoint at function [in ¯le]
run [arglist] start your program [with arglist]
bt backtrace: display program stack
p expr display the value of an expression
c continue running your program
n next line, stepping over function calls
s next line, stepping into function calls

Starting GDB
gdb start GDB, with no debugging ¯les
gdb program begin debugging program
gdb program core debug coredump core produced by program
gdb --help describe command line options

Stopping GDB
quit exit GDB; also q or EOF (eg C-d)
INTERRUPT (eg C-c) terminate current command, or send

to running process

Getting Help
help list classes of commands
help class one-line descriptions for commands in class
help command describe command

Executing your Program
run arglist start your program with arglist
run start your program with current argument

list
run : : : <inf >outf start your program with input, output

redirected
kill kill running program

tty dev use dev as stdin and stdout for next run
set args arglist specify arglist for next run
set args specify empty argument list
show args display argument list

show env show all environment variables
show env var show value of environment variable var
set env var string set environment variable var
unset env var remove var from environment

Shell Commands
cd dir change working directory to dir
pwd Print working directory
make : : : call \make"
shell cmd execute arbitrary shell command string

[] surround optional arguments : : : show one or more arguments

c° 1998,2000 Free Software Foundation, Inc. Permissions on back

Breakpoints and Watchpoints
break [¯le :]line
b [¯le :]line

set breakpoint at line number [in ¯le]
eg: break main.c:37

break [¯le :]func set breakpoint at func [in ¯le]
break +o®set
break -o®set

set break at o®set lines from current stop

break *addr set breakpoint at address addr
break set breakpoint at next instruction
break : : : if expr break conditionally on nonzero expr
cond n [expr] new conditional expression on breakpoint n;

make unconditional if no expr
tbreak : : : temporary break; disable when reached
rbreak regex break on all functions matching regex
watch expr set a watchpoint for expression expr
catch event break at event, which may be catch, throw,

exec, fork, vfork, load, or unload.

info break show de¯ned breakpoints
info watch show de¯ned watchpoints

clear delete breakpoints at next instruction
clear [¯le :]fun delete breakpoints at entry to fun()

clear [¯le :]line delete breakpoints on source line

delete [n] delete breakpoints [or breakpoint n]

disable [n] disable breakpoints [or breakpoint n]
enable [n] enable breakpoints [or breakpoint n]
enable once [n] enable breakpoints [or breakpoint n]; disable

again when reached
enable del [n] enable breakpoints [or breakpoint n]; delete

when reached
ignore n count ignore breakpoint n, count times

commands n
[silent]
command-list

execute GDB command-list every time
breakpoint n is reached. [silent suppresses
default display]

end end of command-list

Program Stack
backtrace [n]
bt [n]

print trace of all frames in stack; or of n
frames|innermost if n>0, outermost if n<0

frame [n] select frame number n or frame at address n;
if no n, display current frame

up n select frame n frames up
down n select frame n frames down
info frame [addr] describe selected frame, or frame at addr
info args arguments of selected frame
info locals local variables of selected frame
info reg [rn]: : :
info all-reg [rn]

register values [for regs rn] in selected frame;
all-reg includes °oating point

Execution Control
continue [count]
c [count]

continue running; if count speci¯ed, ignore
this breakpoint next count times

step [count]
s [count]

execute until another line reached; repeat
count times if speci¯ed

stepi [count]
si [count]

step by machine instructions rather than
source lines

next [count]
n [count]

execute next line, including any function calls

nexti [count]
ni [count]

next machine instruction rather than source
line

until [location] run until next instruction (or location)
finish run until selected stack frame returns
return [expr] pop selected stack frame without executing

[setting return value]
signal num resume execution with signal s (none if 0)
jump line
jump *address

resume execution at speci¯ed line number or
address

set var=expr evaluate expr without displaying it; use for
altering program variables

Display
print [/f] [expr]
p [/f] [expr]

show value of expr [or last value $] according
to format f:

x hexadecimal
d signed decimal
u unsigned decimal
o octal
t binary
a address, absolute and relative
c character
f °oating point

call [/f] expr like print but does not display void

x [/Nuf] expr examine memory at address expr; optional
format spec follows slash

N count of how many units to display
u unit size; one of

b individual bytes
h halfwords (two bytes)
w words (four bytes)
g giant words (eight bytes)

f printing format. Any print format, or
s null-terminated string
i machine instructions

disassem [addr] display memory as machine instructions

Automatic Display
display [/f] expr show value of expr each time program stops

[according to format f]
display display all enabled expressions on list
undisplay n remove number(s) n from list of

automatically displayed expressions
disable disp n disable display for expression(s) number n
enable disp n enable display for expression(s) number n
info display numbered list of display expressions

Expressions
expr an expression in C, C++, or Modula-2

(including function calls), or:
addr@len an array of len elements beginning at addr
¯le ::nm a variable or function nm de¯ned in ¯leftypegaddr read memory at addr as speci¯ed type
$ most recent displayed value
$n nth displayed value
$$ displayed value previous to $
$$n nth displayed value back from $
$ last address examined with x
$ value at address $
$var convenience variable; assign any value

show values [n] show last 10 values [or surrounding $n]
show conv display all convenience variables

Symbol Table
info address s show where symbol s is stored
info func [regex] show names, types of de¯ned functions (all,

or matching regex)
info var [regex] show names, types of global variables (all, or

matching regex)
whatis [expr]
ptype [expr]

show data type of expr [or $] without
evaluating; ptype gives more detail

ptype type describe type, struct, union, or enum

GDB Scripts
source script read, execute GDB commands from ¯le script

define cmd
command-list

create new GDB command cmd; execute
script de¯ned by command-list

end end of command-list
document cmd

help-text
create online documentation for new GDB

command cmd
end end of help-text

Signals
handle signal act specify GDB actions for signal:

print announce signal
noprint be silent for signal
stop halt execution on signal
nostop do not halt execution
pass allow your program to handle signal
nopass do not allow your program to see signal

info signals show table of signals, GDB action for each

Debugging Targets
target type param connect to target machine, process, or ¯le
help target display available targets
attach param connect to another process
detach release target from GDB control

Controlling GDB
set param value set one of GDB's internal parameters
show param display current setting of parameter

Parameters understood by set and show:
complaint limit number of messages on unusual symbols
confirm on/o® enable or disable cautionary queries
editing on/o® control readline command-line editing
height lpp number of lines before pause in display
language lang Language for GDB expressions (auto, c or

modula-2)
listsize n number of lines shown by list
prompt str use str as GDB prompt
radix base octal, decimal, or hex number representation
verbose on/o® control messages when loading symbols
width cpl number of characters before line folded
write on/o® Allow or forbid patching binary, core ¯les

(when reopened with exec or core)
history : : :
h : : :

groups with the following options:

h exp o®/on disable/enable readline history expansion
h file ¯lename ¯le for recording GDB command history
h size size number of commands kept in history list
h save o®/on control use of external ¯le for command

history

print : : :
p : : :

groups with the following options:

p address on/o® print memory addresses in stacks, values
p array o®/on compact or attractive format for arrays
p demangl on/o® source (demangled) or internal form for C++

symbols
p asm-dem on/o® demangle C++ symbols in machine-

instruction output
p elements limit number of array elements to display
p object on/o® print C++ derived types for objects
p pretty o®/on struct display: compact or indented
p union on/o® display of union members
p vtbl o®/on display of C++ virtual function tables

show commands show last 10 commands
show commands n show 10 commands around number n
show commands + show next 10 commands

Working Files
file [¯le] use ¯le for both symbols and executable;

with no arg, discard both
core [¯le] read ¯le as coredump; or discard

exec [¯le] use ¯le as executable only; or discard

symbol [̄le] use symbol table from ¯le ; or discard
load ¯le dynamically link ¯le and add its symbols
add-sym ¯le addr read additional symbols from ¯le ,

dynamically loaded at addr
info files display working ¯les and targets in use
path dirs add dirs to front of path searched for

executable and symbol ¯les
show path display executable and symbol ¯le path
info share list names of shared libraries currently loaded

Source Files
dir names add directory names to front of source path
dir clear source path
show dir show current source path

list show next ten lines of source
list - show previous ten lines
list lines display source surrounding lines, speci¯ed as:

[¯le :]num line number [in named ¯le]
[¯le :]function beginning of function [in named ¯le]
+o® o® lines after last printed
-o® o® lines previous to last printed
*address line containing address

list f,l from line f to line l
info line num show starting, ending addresses of compiled

code for source line num
info source show name of current source ¯le
info sources list all source ¯les in use
forw regex search following source lines for regex
rev regex search preceding source lines for regex

GDB under GNU Emacs
M-x gdb run GDB under Emacs
C-h m describe GDB mode
M-s step one line (step)
M-n next line (next)
M-i step one instruction (stepi)
C-c C-f ¯nish current stack frame (finish)
M-c continue (cont)
M-u up arg frames (up)
M-d down arg frames (down)
C-x & copy number from point, insert at end
C-x SPC (in source ¯le) set break at point

GDB License
show copying Display GNU General Public License
show warranty There is NO WARRANTY for GDB. Display

full no-warranty statement.

Copyright c° 1991,'92,'93,'98,2000 Free Software Foundation, Inc.
Author: Roland H. Pesch

The author assumes no responsibility for any errors on this card.

This card may be freely distributed under the terms of the GNU
General Public License.

Please contribute to development of this card by annotating it.
Improvements can be sent to bug-gdb@gnu.org.

GDB itself is free software; you are welcome to distribute copies of it
under the terms of the GNU General Public License. There is absolutely
no warranty for GDB.

